The math module

An introduction to common
Python modules

This video will provide an introduction to using Python modules. It will also
discuss some features of the math module.

Modules and Functions

Modules are toolboxes...

— contain tools (functions) that perform related
tasks.

Code packaged for easy reuse and sharing.

Many built-in modules for Python

Some modules load automatically for you, for
others you must use an import statement.

Custom functions and modules can package
your code for reuse.

Modules are Python’s version of a toolbox — they contain a set of tools that
perform related tasks.

Modules are a convenient way to package code so that it can be easily used
by many scripts or shared with others.

The Python installed with ArcGIS comes with dozens of modules that can be
used in your scripts. Many more modules are available online for free
download.

Modules need to be imported into a script before you can access their
functionality.

You can also create custom functions and modules that allow you to reuse
code more efficiently.

The import statement

If entire module imported as...
math math = m
- then module must be specified in statements, e.qg.
math.sin(x) m.sin(x)
If tools imported explicitly from module...

math % arcpy env
all tools in module toolset
- then don’t specify module, e.g.
sin(x) env.workspace = r“C:\NRE_5585”

3

There are a few different ways that we can import modules which will
determine the syntax needed to use the module’s tools.

If we simply import the module, then we need to use the full module name to
“call” its functions.

When importing a module, we can assign the module a more convenient name
that we can use when referring to it in the script.

We can import all tools from a module in which case the module name does
not need to be specified when calling its functions. This can make statements
more concise but it has the disadvantages of not allowing the use of the auto-
completion and it can also make the script more difficult to follow.

Some modules contain toolsets which can be imported without the rest of the
module. In this case, only the toolset name needs to be specified when calling
the toolset’s functions.

Documentation on built-in modules
Python Shell [9((=]].3]

Fie Edt Shel Debug Options Windows E3='¥)
Lype copyrignt, creaits or ucensey,

mation About IDLE
IDLE Help

Python Docs F1

Personal firewall software may wam
ection IDLE

makes to its subprocess using this cor
al loopback

mterface. This connection is not visib Global Module Index
mal

qUICK & T aTmodues
mterface and no data is sent to or rec,
Internet G

s Global Module Index

in-depth documents on specific topics answers!)

Indices and tables:

& Python v2.6.5 documentation modules

Glq AIBICIDIE|F|GIH[IJ|KILIMIN|O|P|QIR|S|TIU|VIW
/4

IDLE26.5
>5> I the
__builtin The module that provides tH
Meta inf| built-in namespace.
__future Future statement definitiong
— __main The environment where the

level scnpt is run

Documentation for Python’s built-in modules can be found through the Python
Shell’'s help documentation.

These modules are listed under the Global Module Index.

The math module

math =~ m

Constants and math operators. For complex
numbers, use cmath module.

Constants...
m.pi (3.14159...)
me (2.71828...)
Powers and logs...
m.exp(x)— ¢*
m.log(x, by—— log of x, base b

m.log(x) < natural log of x

The math module contains tools and constants useful for higher-level math
operations.

The module includes constants such as pi and e. Note that | assigned the

name “m” to the math module when | imported it so | need to refer to this
name when using the math tools.

The math module includes exponential and log functions.

The math module continued

Angular conversions...

m.degrees(x) - radians to degrees

m.radians(x) - degrees to radians

Trigonometry (results in radians)...
m.sin(x) m.cos(X) m.tan (X)
m.asin(x) m.acos(x) m.atan (X)

- determines quadrant vector is located in f m'atango (¥, x)
- useful for azimuth calculations

180<§ T} 0

degrees -90 6

The module also contains functions for converting angles from degrees to
radians and vice versa.

Trigonometric functions are also included. Note that the trig functions require
the input angle to be in radians. atan2 is a useful function for calculating
azimuths but it can be a bit non-intuitive — so we’ll take a closer look at it.

A closer look at the atan2
(math module)

pnt2 (10, 20)

A

use atan2 to e

calculate o ST dY=Y,-Y,

’

pnt1 (0, 0) dX = X2 - X1

o = m.atan2 (dY, dX)
results are in radians

in degrees, results range
from -180° to 180 °

— 0°equal to azimuth of 90° E

The atan2 function calculates the angle formed between a line and the x-axis.

The inputs for atan2 are the change in the Y direction and the change in the X
direction.

The function gives results in radians.

Note that the function gives results that range from —pi to pi (-180 to 180
degrees); 0 degrees is along the positive x-axis. The angle increases positively
in the counter-clockwise direction and negatively in the clockwise direction.

Converting atan2 result to azimuth

) what we really

| / want is this angle
\v atan2 gives

L— .
c\ us this angle

[/ angle > 0:
azimuth = 90-angle

So we just need azimuth < 0:

to convert... azimuth += 360

L azimuth = 90+abs(angle)

Azimuth is typically a more useful measure of direction for geospatial work
than the output of atan2. Azimuth is a measure of direction with O degrees at
North and increasing in the clockwise direction.

The code here will convert an atan2 angle into an azimuth.

Script example: math module

math @« m Calculate azimuth
dX =-10 from dX and dY
dY =-20

angle = m.degrees(m.atan2(dY,dX))
angle > 0:
azimuth = 90-angle
azimuth < 0: azimuth += 360

: azimuth = 90+abs(angle)

The code here shows how to calculate azimuth based on the change in X and
Y directions.

